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A STUDY OF THE POSSIBLE CHARACTERISTICS

OF A LOW-ALTITUDE ELECTRON LAYER

IN THE MARTIAN ATMOSPHERE 1

By H. Andrew Wallio

Langley Research Center

SUMMARY

The apparent diurnal Martian surface pressure variation, as deduced from radio

occultation experiments, is discussed and explained as possibly arising from the effect

of a low-altitude electron layer. Possible source and loss mechanisms for the low-

altitude electron layer are presented and discussed. Time-dependent differential equa-

tions describing the electron layer are derived and then integrated to investigate the

electron distribution resulting from several processes that might occur in the atmos-

phere. It is concluded that the source mechanism is the sublimation of alkali atoms from

a permanent dust layer (a dust layer of 0.2-jm particles of number density 9 cm - 3 is suf-

ficient), and that the dominant loss process must involve CO 2 clustering about the alkali

atoms. By use of these processes, an electron layer is developed which would explain the

apparent diurnal surface-pressure variation.

INTRODUCTION

Since 1965, there have been four U.S. planetary space probes used in the explora-

tion of the planet Mars. These spacecraft were used to gather data concerning the phys-

ical properties of the planet; one of the primary objectives of the research was the deter-

mination of the physical properties of the Martian atmosphere. These properties were

examined by techniques of visual imagery (refs. 1 to 3), infrared spectroscopy (refs. 4

to 6), infrared radiometry (refs. 7 and 8), ultraviolet spectrometry (refs. 9 to 12), and

radio occultation (refs. 13 to 19).

Analyses of radio occultation data from the U.S. Mariner spacecraft have produced

a considerable amount of information on both the neutral atmosphere and ionosphere of

1Most of the information presented herein is a revision of material contained in a
thesis entitled "The Characteristics of a Possible Low Altitude Electron Layer in the
Martian Atmosphere" submitted to the School of Engineering and Applied Science of the
George Washington University in December 1973 in partial satisfaction of the require-
ments for the degree of Master of Science.



Mars. Data from a single occultation entry and exit were obtained from each of the

flyby missions of Mariner 4 (1965), 6 (1969), and 7 (1969), and data from a large number

of occultations of the Mariner 9 (1971) orbiter have greatly extended the latitudinal, lon-

gitudinal, and diurnal coverage of the planet.

On the basis of the currently available analysis of the Mariner radio occultation

data (refs. 16 and 17), there are some indications of apparently systematically higher

surface pressures on the nightside of Mars than on the dayside. This difference is

approximately 1 mb or roughly 20 percent of the total pressure. These indications of an

apparent diurnal variation in surface pressure might be explained by either a variation
in topography at the occultation location or by some sort of diurnal process occurring in

the atmosphere. This paper will discuss one atmospheric diurnal process that might

explain the radio occultation results.

In a radio occultation experiment, as the spacecraft passes behind the planet, the

atmosphere acts as a lens to the radio ray and changes the apparent motion of the space-

craft. The changes in motion of the spacecraft are measured by the change in frequency
of the received radio ray (Doppler signal). After subtracting the predicted change in

spacecraft motion from the measured Doppler change, the difference or residual is used

to deduce the atmospheric density. It has been shown that there are interpretation ambi-

guities inherent in the reconstruction of atmospheric properties from single-frequency

radio occultation data. (See ref. 20.) This ambiguity arises from the fact that the
deduced refractivity can be composed of both a positive component (due to the neutral

atmosphere which causes an apparent motion away from the observer) and a negative
component (due to the presence of free electrons which cause an apparent motion toward

the observer). Thus, a single-frequency occultation measurement can be represented by

one equation with two unknowns which cannot be solved for the effects of the two compo-

nents separately. Because of this interpretation ambiguity, numerous atmospheric
models (representing different atmospheric states) can be developed that will produce
the refractivity profile obtained from any single-frequency radio occultation experiment.

One atmospheric model that accounts for the apparent pressure disparity includes a

time-dependent low-altitude electron layer in the dayside atmosphere. (See ref. 21.)

The properties of a planetary atmosphere and ionosphere vary with altitude, lati-
tude, longitude, and the local time of day. A low-altitude electron layer will possess
similar variations. This paper will discuss an atmospheric model that includes an elec-
tron layer and will develop equations to describe the altitude and time variations of the
layer. To do this, the simplified (no transport) time-dependent electron density continu-

ity equation is normalized and nondimensionalized for ease of handling. The resulting

first-order nonlinear differential equation is integrated to give diurnal electron density
profiles as a function of various absorption and recombination coefficients. The devel-
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opment of these models is somewhat the reverse of that associated with the classical

Chapman electron-layer theory. In that theory, the atmospheric properties are known

and the resulting electron layer is determined. In the present case, the magnitude and

functional form of the electron layer at a specific geographic location and local time is

specified by the difference between the refractivity resulting from the neutral atmos-

phere and the refractivity as measured by radio occultation. Knowledge of the electron

distribution then allows the distribution of the ionizable constituent to be determined.

The recombination and the absorption coefficients in the atmospheric model are empiri-

cally adjusted until an acceptable ionizing constituent model which produces the speci-

fied electron distribution results.

SYMBOLS

A symbol for alkali atom

B coefficient used to define alkali height distribution

Smagnetic induction vector

C coefficient used to define alkali height distribution

d distance along ionization path (defined in fig. 5)

Eelectric field vector

e electron and charge on electron

f dynamical flattening coefficient; also frequency of radio waves

G(t) dummy variable

g acceleration due to Mars gravity

H scale height in atmosphere

H magnetic intensity vector

h altitude along ionization path; also Planck's constant (eqs. (24) and (25))
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I intensity of sunlight along ionization path

10 intensity of sunlight outside atmosphere

ip impact parameter (defined in fig. 5)

Jelectron current vector

K constant used to define alkali number density

Kmn rate coefficient for reaction mn

L a term which accounts for loss of electrons

1 length along ionization path

M third particle (probably dust)

m mass of electron

N refractivity, (1 - 1) x 106

Nc composite refractivity in atmosphere

Ne component of refractivity due to electrons

Nn component of refractivity due to neutral particles

nA number density of alkali atoms

nCO 2  number density of CO 2 molecules

ne number density of electrons

nn  number density of neutral molecules

P probability of ionization

Pe rate of production of electrons
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Pi measured surface pressure

p0  base surface pressure

Q absorption coefficient

R gas constant

Rp radius of planet

T atmospheric gas kinetic temperature

t time

V atmospheric wind velocity

velectron velocity due to electric field (see appendix)

W variable in equation (34)

X variable of integration

Z altitude in atmosphere

a electron recombination coefficient

6 number of electrons released per captured photon

Ec dielectric constant of composite atmosphere

En dielectric constant of neutral atmosphere

E0 dielectric constant of free space

X wavelength of radiation

XlA 2  angle along ionization path (fig. 5)

Sindex of refraction



frequency of radiation

a cross section of CO2 absorption; conductivity of electron gas

local time (hour angle) measured from noon

x solar zenith angle

w angular frequency of radio ray

Subscripts:

A alkali atoms

c composite atmosphere

e electrons

i an ith measurement

max maximum

n the neutral atmosphere

0 a base level

RADIO OCCULTATION AND THE MARTIAN ATMOSPHERE

The radio occultation occurs as a spacecraft passes behind a planet as viewed

from the tracking station. The radio signal between the spacecraft and tracking station

is changed by passing through the atmosphere of the planet being studied. By making

certain assumptions about the atmosphere, the position of the spacecraft, and the prop-

agation paths, the change in the received radio frequency (Doppler) as the radio ray

passes through the atmosphere can be related to the index of refraction of the atmos-

phere. Since the index of refraction g of most gases is numerically very close to

unity, the quantity generally used in describing the atmosphere is the refractivity unit.

The refractivity is related to the index of refraction as

N = ( - 1)106
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Figure 1 is a sketch of a typical profile of refractivity as a function of altitude for

the atmosphere of Mars (based on ref. 13). Plots such as figure 1 are the usual output

of radio occultation experiments, and it is these plots that form the basis for the infer-

ence of atmospheric properties. The negative refractivity peak which occurs at 135 km

on the dayside profile is attributed to free electrons resulting from photoionization proc-

esses involving CO2 in the Martian atmosphere. If there are at most a very small num-

ber of low mass ions present (a reasonable assumption for the atmosphere of Mars), the

number of free electrons is simply related to the negative refractivity by a linear

equation.

The lower positive peak is assumed, by most authors, to be caused only by the

neutral atmosphere. The relationship between the refractivity and the properties of the

neutral atmosphere is more complex than that for electrons since there can be several

gases which contribute to the refractivity and only one equation relating them. There-

fore, the exact gas composition must either be known or assumed, whereas the refrac-

tivity profile is used to determine the molecular number density. The molecular num-

ber density is used together with the hydrostatic equation and the perfect gas law to

determine the temperature distribution in the atmosphere. The pressure variation in the

atmosphere can be obtained by either integrating the number density in the hydrostatic

equation or by using the temperature distribution in the perfect gas law.

The peak dayside electron density, as deduced from the Mariner radio occultation,

occurs at about 135 km with a magnitude of approximately 1.6 X 105 electrons per cm 3 .

The deduced atmospheric surface temperatures vary from 141 K to 272 K, about 240 K

being the average dayside surface temperature and about 160 K being the average night-

side surface temperature. The deduced lapse rate in the atmosphere varies from-0 to

3.8 K/km, a large number of measurements implying a near isothermal atmosphere, and

almost all measurements having a lapse rate of less than one-half the theoretical adia-

batic lapse rate (5 K/km). (See ref. 19.) (These small temperature gradients are the

basis of using, in the following sections, the approximation that the atmosphere is iso-

thermal near the surface. The error in pressure obtained by using an isothermal

approximation over a height of 10 km will be no larger than about 3 percent at 10 km.)

The deduced Martian surface pressures vary from 2.5 mb to 10.8 mb, the average sur-

face pressure being from 4.7 to 6.1 mb, depending upon the surface that is taken to be

representative of the mean planet surface. (1 bar = 1 x 105 Pa.)

DESCRIPTION OF APPARENT DIURNAL VARIATION

IN SURFACE PRESSURE

On the basis of the currently available analysis of the Mariner radio occultation

data (refs. 16 to 18), there are indications of apparently systematically higher surface
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pressures on the nightside of Mars than on the dayside. It is difficult to examine the

published occultation surface pressures as a group, since the data occurs at different

altitudes, places, times of day, and times of year. To compare the data as a group, the

effects of different altitudes and temperatures in the atmosphere are taken into account,

and any of the previously mentioned effects (including season and meteorology) will be

assumed to cancel out when group averages are taken.

A reasonable approximation for a Martian equipotential surface can be obtained

from the dynamical flattening. (See ref. 22.) An approximation to the equipotential

radius as a function of latitude is R z ReqEI - f sin2 (LAT], where Req is the equato-

rial radius, f the flattening coefficient, and LAT is the latitude of the point in ques-

tion. From Mariner 9 orbital analysis (refs. 23 and 24), the flattening coefficient f

was measured to be 5.25 x 10- 3 , and this value is used in the following analysis.

To allow for the different values of deduced surface temperatures and altitudes

associated with each deduced surface pressure, the deduced surface pressures are com-

pared by two methods. The first method is to scale each surface pressure data point to

'a pressure altitude. The pressure altitude is the altitude in a reference atmosphere at

which a given pressure level occurs. As an illustration of this method, assume that the

Martian equipotential surface has the same dayside and nightside pressure p0 at the

zero altitude or base surface, then for a deduced. pressure Pi, temperature Ti asso-
RTi

ciated scale height, Hi = .f), and altitude, Zi,

pi = p0 exp 0

The reference atmosphere is taken to have the same equipotential surface, the same

zero altitude pressure p0 , a constant temperature T O (and, therefore, scale height

H0 ) over the entire reference surface. Then, for the same deduced pressure pi there

is a pressure altitude ZO, i such that

pi = po exp( ZH i)

and therefore, the pressure altitude associated with each pi, Ti, and Zi deduced from

a radio occultation experiment is defined as

H0Z0, i - H Zi

If the base surface pressure is the same for both the dayside and nightside surface,

then the natural log of the pressure data plotted against the pressure altitude should all
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lie on a straight line (within the measurement accuracy and the assumption of an isother-

mal atmosphere over the heights in question).

Figure 2 is a plot of pressure against pressure altitude above a geopotential

(Requator = 3390 kmin, f= 5.25 x 10-3) for a set of night (exit) and day (entrance) deduced

surface pressures. A reference temperature of 240 K was used and therefore

H0 = 12 km and the deduced surface temperature at each data point was used for Hi

to calculate the pressure altitude. The line in figure 2 is a reference atmosphere with

a base pressure of 6.1 mb and a scale height of 12 km. As can be seen from figure 2,

the dayside (entrance) pressure measurements are not very far from the line but the

nightside (exit) pressure measurements cluster above the line; this condition implies

that the assumption of an equal base surface pressure for both the dayside and the night-

side was invalid.

The second way to compare the data is to examine the base surface pressure P0

by the relation

P0 = Pi exp(+

where Pi, Zi, and Hi are the surface pressure, altitude from the geopotential, and

scale height deduced from the radio occultation experiment. Figure 3 is a plot of the

calculated base surface pressure against relative time of day for a set of day (entry) and

night (exit) measurements referenced to a geopotential. Again the difference between

day and night pressure measurements is evident and is approximately 1 mb.

Since it is considered unlikely that a day-night pressure differential of such mag-

nitude (20 percent of the total pressure) could actually be sustained for any appreciable

time, some process or combination of processes must be causing the apparent difference.

These might be such things as variations in the topography at the occultation location,

large variations from a simple geopotential surface (smaller perturbations have been

implied in refs. 25 and 26), or some diurnal process occurring in the atmosphere

(ref. 21).

Among the possible causes of the apparent diurnal pressure difference, one of the

most interesting and least examined is some diurnal process occurring in the lower

atmosphere. A most plausible cause of a diurnal process is solar radiation as a driving

source for some mechanism in the atmosphere. Solar radiation is responsible for both

heating and ionization in the atmosphere. Ionization is precisely the process to examine,

since free electrons exhibit a negative refractivity when probed with radio waves.

In order to illustrate how electrons can affect the apparent pressure, it will be

necessary to review the discussion from the previous section. Figure 1 is a sketch of a
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typical dayside (entry) and nightside (exit) refractivity profile obtained from the radio

occultation experiment. (See ref. 18.) These refractivity profiles are results of the

experiment and are used as the basic data for deriving atmospheric properties. The

positive refractivity in the lower atmosphere has been assumed to be caused by the neu-

tral atmosphere. The assumption made by most authors in interpreting the refractivity

data is that there are no free electrons below the 50- to 70-km region. Therefore, the

smaller positive dayside refractivity is interpreted as a smaller dayside pressure.

Harrington et al. (ref. 20) have pointed out that if there are free electrons below 50 km

on the dayside, these electrons would contribute a negative component to the refractivity

in this region. The observed refractivity would then be a composite of the negative

refractivity due to the free electrons and the positive refractivity due to the neutral

atmosphere. The observed composite refractivity would then be smaller than that of the

actual neutral component of refractivity and, therefore, the pressure deduced from the

observed refractivity would be less than the actual atmospheric pressure.

ESTIMATION OF FORM OF ELECTRON LAYER

If it is assumed that the dayside positive section of the lower refractivity profile,

as shown in figure 1, is a composite profile of the neutral atmosphere plus an electron

layer, then it can be shown that the real part of the index of refraction is (see

appendix):

1c2= An 2 - n(e-)2 (27T)2E0mf2]-1 (1)

where lc is the measured composite real index of refraction, /in is the real index

of refraction of the neutral atmosphere, and the remaining terms are the contribution of

the electron layer (where n is the number of electrons, e- and m are the charge

and mass of an electron, E0 is the dielectric constant of free space, and f is the fre-

quency of the probing radio signal).

Rearranging equation (1) and introducing refractivity N-- (g1 - 1) x 106

Ne = -1 + [1 - (1 + Nn)2 + (1 + Nc)2] 1 / 2  (2)

where Ne is the refractivity of the electron distribution, Nc is the measured refrac-

tivity, and Nn is the refractivity of the neutral atmosphere. Equation (2) can be

approximated as (see appendix):

Ne Nc - Nn (3)
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Assuming that the atmosphere is in hydrostatic equilibrium and that the neutral

refractivity is proportional to the neutral density (a valid assumption for the low gas

density on Mars) results in

Nn(Z) = Nn(0) exp(- n (4)

where Z is the altitude above the geopotential and Hn is the scale height of the neu-

tral atmosphere

- Zmg (5)-

Hn =Z -d (5)

By assuming that the deduced nightside surface pressure is more indicative of the actual

surface pressure, and by allowing various formulations for Hn, that is, isothermal,

constant-temperature gradients, and so forth, many models of electron distributions can

be derived. Figure 4 (from ref. 21) is a sketch of electron number density as a function

of altitude for several derived electron distribution models. The upper solid curve is

the ionosphere that is deduced by radio occultation for most dayside occultations. The

lower three curves are possible electron distribution models which would essentially

equalize the surface pressure, and which would still yield the same refractivity profile

as the refractivity profile observed by the radio occultation experiment. As can be seen

from figure 4, these calculated layers all have peak densities of 6 to 8 x 104 electrons

per cm 3 and the peak density occurs at altitudes below 15 km. It should also be noted

that the calculated electron density profiles are only rough estimates, since the data

from which they are calculated consist primarily of published numbers of the pressure

at the point of radio occultation and the measured refractivity profiles in the atmosphere

(of which very few profiles have been published). To compound the problem there are

large differences in the surface pressures, deduced from the same radio occultation data,

by different authors.

SOURCE OF PROPOSED ELECTRON LAYER

In the past, Martian ionospheric models have been controversial, and much

research has been done on the upper ionosphere of Mars with differing ideas about the

ionosphere. (See refs. 13 and 28 to 31.) Although the existence of low (below 50 km)

electron layers on Mars has been conjectured (ref. 31) and electron density of the order

of 104 cm - 3 peaked at 65 km has been measured (ref. 32), little research has been

11



reported on the lower ionosphere. Whitten et al. (refs. 33 and 34) have studied the

lower Martian ionosphere by studying the influx of solar protons and cosmic rays on a

CO 2 atmosphere. They concluded that for a quiet Sun the lower ionosphere below 65 km
is formed predominately by galactic cosmic rays, is a layer which may have little diur-

nal variation, and is peaked at approximately 25 to 35 km with a maximum density of the

order of 103 electrons cm- 3.

Since all the efficient channels of electron production involving photochemical proc-

esses in gaseous carbon dioxide in the Martian atmosphere have been utilized in theo-

retical modeling of the ionosphere, the postulated electron layer must come from some

other process not involving CO 2 in the atmosphere. Also, since the effect of the elec-

tron layer is diurnal, the electron density should exhibit a diurnal variation. If it is

assumed that this diurnal variation is driven by sunlight, the source must be able to lib-
erate electrons when exposed to solar ultraviolet radiation. It is known that CO 2 gas

absorbs significantly in the 100 to 1700 A region (ref. 35) and CO2 gas is completely

transparent from about 1800 A to at least 2100 A (ref. 36). The Martian atmosphere has
very little ozone and therefore there is an ultraviolet window in the 1750 A to 2100 A
region (ref. 35). Hence, radiation in this wavelength interval can reach the Martian sur-

face. It follows then that the electron source material must release electrons when
exposed to radiation in the 1800 A to 2100 A region (6.9 eV to 5.9 eV). Based on ioniza-
tion potentials and abundance criteria, the list of source candidates has been reduced to
potassium (ionization potential, 4.3 eV), sodium (5.12 eV), barium (5.19 eV), lithium
(5.36 eV), aluminum (5.96 eV), and calcium (6.09 eV). All these materials are cosmi-

cally abundant and found in both planetary crustal material and meteoric dust.

This electron source material, alkali metals in the atmosphere, must come from

either the top of the atmosphere (meteoric ablation), the bottom of the atmosphere
(crustal material raised into the atmosphere by the wind), or a combination of the two

methods. It is proposed that the alkali metals sublimate from aerosols or "dust" parti-
cles (ref. 37) that have arrived in the atmosphere by one of the methods just mentioned.

Dust and aerosol particles in the Martian atmosphere have been observed and meas-
ured by many authors (refs. 2, 35, and 38 to 42). Thin detached haze layers were dis-
tinguished in Mariner photographs at altitudes of 5 to 45 km (ref. 43). The presence of
dust in the atmosphere was found to be able to account for the fact that measured atmos-

pheric temperatures were considerably warmer than the theoretical temperatures cal-
culated, if radiative equilibrium in the atmosphere is assumed. (See ref. 44.) The pres-
ence of a low-altitude dust layer could also account for the observed photolytic stability

of the Martian CO2 atmosphere and in addition this dust brings into agreement the
observed and computed profiles of the minor constituents O, 02, CO, and 03. (See
ref. 45.) In fact, some authors have concluded that there are aerosols permanently
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present in the Martian atmosphere that absorb solar radiation. (See ref. 46.) This dust

would most likely be composed of oxides of Si, Ti, Fe, Mn, Mg, Ca, and Na. (See

ref. 47.) The dust in the Martian atmosphere has a measured SiO 2 content of about

60 percent, by weight (ref. 39); and since this is a slightly enhanced silicon content (com-

pared with lunar or chondritic material), the alkaline content will also be enhanced. (See

ref. 48.)

The dust could arrive in the atmosphere in either one or both of two ways. First,

the dust may be the result of the surface material having been broken up into fine powder

by the heating and cooling differences experienced over a Martian day. This powdered

surface material could easily be blown into the atmosphere by thermal winds (refs. 49

and 50) or localized dust storms which occur rather frequently (ref. 51). Since 0.2-~.m

particles would remain in the atmosphere on the order of 2 years, the atmosphere may

contain such particles most of the time. (See ref. 52.) Second, the dust could result

from the ablation of meteoroids which enter the atmosphere. This idea has been advanced

as the source of sodium layers in the Earth's atmosphere (ref. 53) and since Mars is

closer to the asteroid belt than Earth, the effect may be even more pronounced for Mars.

MODELING OF ALKALI LAYER

Aerosol layers have been detected in the Earth's lower atmosphere (see refs. 54

to 56). Alkali metal layers have also been measured in the Earth's atmosphere. (See

refs. 53 and 57 to 61.) The sodium layer in the Earth's atmosphere has been postulated

to come from an aerosol or "dust bank layer" (refs. 61 to 63), or from meteoric mate-

rial (refs. 37, 53, and 64). The actual photochemical process and distributions in the

Earth's atmosphere are not too well understood or modeled, primarily because of the

lack of quantitative atmospheric data, lack of laboratory measurements of the physical

properties of metal ions and their oxides, and lack of knowledge as to the effects of com-

peting reactions such as CO2 clustering (ref. 65) and aerosol ion pair annihilation

(ref. 66).

It will be assumed that the final Martian alkali number distribution follows roughly

the same shape as that found for Earth's sodium distribution (such as shown in ref. 64)

and that this distribution can be adequately approximated by the equation

nA(Z) = K exp(- - Be-Z/C) (6)
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where nA(Z) is the initial neutral alkali number density as a function of altitude Z.

The quantity C can be thought of as a "scale height" for the rate of fall of the upper

side of the distribution and B is a dimensionless constant which controls the shape of

the lower side of the distribution. Since the scale height observed in the upper side of

the Earth's sodium layer is approximately one-half the neutral atmosphere scale height

(ref. 60), C was given the value of 6 km (about one-half the Martian neutral atmos-

phere scale height). The altitude of peak density of the alkali distribution is given by

Z(nA,max) = C loge B (7)

Thus, the value of B was chosen to be 6 in order that the distribution peak occurs at

an altitude below 15 km. (For the numbers chosen, the peak occurs at 10.75 km.)

DERIVATION OF TIME-DEPENDENT ELECTRON DISTRIBUTION

The continuity equation relates the change in electron density per unit time to the

production, loss, and the divergence, and is given by

ane-e= Pe - L - (neV)

where ne is the electron density, Pe is the production rate, L is the loss rate, and

7 is the transport velocity. It will be assumed that the transport terms can be neglected

(except for large dust storms or cases of local severe temperature gradients on sloped

surfaces, the expected vertical velocities will displace electrons less than one-tenth of

the neutral atmosphere scale height during the mean lifetime of an electron) so that the

only terms to be derived are the production and loss rates.

The rate of production of electrons Pe is proportional to the loss of ionizing radi-

ation per unit path length (Pe(Z) c l Z). Figure 5 depicts the geometry and defines the

variables used in the derivation. (As can be seen from fig. 5, the atmosphere is assumed

to be spherically symmetric.) To determine Pe, it is assumed that the absorption of

ionizing solar radiation in an element of atmospheric path length dl is proportional to

the radiation flux I, the atmospheric alkali concentration nA, and the absorption cross

section Q, and thus can be written as

dI = - IQnAdl (8)

where the I and Q are wavelength dependent. This wavelength dependence will be

accounted for later in this development.
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From figure 5

ip= (Rp + h) sin A. = (Rp + Z) sin X (9)

and

1 = -ip cot X

where X is the solar zenith angle, and dl = i csc 2 X dk will be used in equation (8).

In addition to loss of radiation due to ionization, there is a competing reaction

from the very weak absorption by CO 2 gas in the 1900 A to 2100 A region (absorption

coefficient a). Thus, equation (8) becomes

dl = -I(QnA + cnCO dl (10)

It is assumed that the diurnal variation in the concentration of the alkali material

is very small (in keeping with the long lifetime of the particles), and since their number

density is also small, the removal of a source atom must be accounted for in some

manner. Therefore, let

nA(ht) = nA(h,0) - n (Zt) (11)

An initial detailed calculation (integration downward along an ionization path and then

stepping ionization paths during the day) showed that ne(Z,t) follows the nA height

distribution within about 5 percent, so that it will be approximated as

ne(h,t) = G(t) exp(- h - 6e-h/6) = G(t) f(h) (12)

Combining equations (10) and (12) yields

dI = -I(Q nA(h,0) - G(t) f(h)j + unco2j ip csc 2 X dk (13)

From equation (6)

dl= -I(Q f(h)[K - G(t] + anCO 2ip csc 2 X dX (14)
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so that

SI -  (Q f (h) K - G(t)] + anC ip csc 2 X dX (15)
0

or

I= 10 exp (-Y(Q f(h)[K- G(t)] + anCO ip Csc 2 X dX (16)

where h=ip ecscX -Rp.

The rate of production of electrons is

S dI= (17)Pe =  
Z

where 6 is the number of electrons released per photon absorbed for ionization. Sub-

stituting equation (16) into equation (17) then gives

pe= 6I{QnA(Z,0) - G(t) f(Z3 (18)

or

pe= 610 (QnA(Z,0)- G(t) f(Z exp(- (Q f(h)[K - G(t)] + anCO2 ip csc 2 j dk) (19)

where h = ip cscX -Rp.

Since the ionization cross section and the solar flux are both wavelength dependent,

the probability of ionization can be written as

P = QI0 dX
1

where Q is the absorption cross section and 10 is the solar flux per unit wavelength.

For alkali metals Q varies from about 10 - 22 to 10 - 18 cm - 2 . (See refs. 67 and 68.)

By integrating over the wavelength, P varies between 3 x 10-8 sec - 1 and 3 x 10 - 4 sec - 1 ,

where k 1 = 1900 A and X2 = 2700 A, and these values, which are roughly the same as

those for Earth (ref. 69), are used for QIO in equation (19).
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The time-dependent term in the production term is the variable X (solar zenith

angle). The variable X is related to P (local time measured from noon) by

cos y = sin D sin (LAT) + cos D cos (LAT) cos ¢ (20)

where D is the declination of the Sun, LAT is the latitude at point d at height Z

and

t = 88 7750 = 1.41 x 104 (21)
27r

since there are 88 775 seconds in the Martian solar day.

The conditions for the Sun not to be visible at point d are

cos x < 0

(22)

S+ - sin X <1

and if these conditions are met

pe 0 (23)

There were two types of loss reactions considered. The first is radiative recom-

bination in which the ionized material recombines directly with an electron. This type

of reaction is schematically

A + hv - A+ + e (Production) (24)

and

A+ + e - A + hv (Radiative recombination) (25)

If the atmosphere is electrically neutral, this reaction has a loss term of

L = -ane2  (26)

The second type of loss reaction is a more complicated process in the atmosphere,

such as

A + hv - A+ + e (Production)
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followed by the two-step process

A+ + CO 2 + CO 2 - A+CO 2 + CO 2  (Rate coefficient K 2 7 ) (27)

and

A+CO 2 + e- - A + CO 2  (Rate coefficient K 2 8 ) (28)

A second reaction of the same type is the process:

A+ + M - A+M (Rate coefficient K 2 9 ) (29)

A+M + e - AM (Rate coefficient K3 0 ) (30)

Reaction pair (eqs. (27) and (28)) is called CO 2 clustering (ref. 67) and reaction

pair (eqs. (29) and (30)) would be using a dust particle as a recombination center, such

as suggested previously. (See ref. 66.) In both reaction pairs (eqs. (27) and (28)) and

(eqs. (29) and (30)), if the rate constants are such that

K2 7 (nCO2 )2 >> K28 ne

or

K29 nn >> K3 0 ne

then the loss process can again be characterized by equation (26)

L = -a.ne 2

The value of a varies greatly, depending on whether the loss process is only

radiative recombination or some combination of the processes discussed. The range of

values used here is from 2 x 10 - 1 2 cm 3 -sec - 1 to 10 - 6 cm 3 -sec- 1 . (See refs. 69 to 72.)

Finally, the production and loss terms are combined into the simplified continuity

equation to yield

dne - Pe - L (31)
dt

or combining with equation (21)

dne = (1.41 x 104)(pe - L) (32)
de
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where pe is defined by equation (19), L by equation (26), and the relation of X to

q by equation (20).

A computer program was developed to solve equation (32). Inputs to the program

are height in the atmosphere, latitude, Sun declination angle, and constants for the pro-

duction rate, loss rate, and alkali number density. The program starts with zero initial

electron density and integrates equation (32) forward in time by using the final electron

density of the previous day as the starting condition for the successive day.

The differential equation (32) is integrated by a fifth-order integration subroutine.

The classical fourth-order Runge-Kutta formula is applied in conjunction with

Richardson's extrapolation to the limit theory. The subroutine is a variable interval

size routine in which the interval is varied to meet a specified local relative truncation

error. A second subroutine is used to compute the integral in the production function

(eq. (19)). The current values of all variables, as updated from the differential equation

subroutine, are used in a 10-point Gauss quadrature integration subroutine. The accu-

racy of these subroutines is far better than is required for the problem at this time,

since the accuracy of the parameters characterizing the electron layer are order-of-

magnitude estimates.

At the end of three Martian diurnal cycles, the results were printed and compared.

If convergence

ne(t + 1 day) - ne(t) 10-3
ne (t + 1 day)

had occurred, the results were plotted; if not, then the program was continued from the

last computing point or new initial conditions were imposed and the program rerun.

APPROXIMATE SOLUTION OF SOME EQUATIONS OF INTEREST

In order to obtain an estimate of the effect that the variation of coefficients (such

as the absorption and recombination coefficients) would have on the electron layer and

also to reduce the range and time of the computer runs, several approximations to the

previously described equations were developed. The first was developed to approximate

the maximum electron density. In order to do this, two approximations were made in

the electron production term (eq. (19)): (1) the effect of CO2 absorption was negligible

(u < 10 - 2 2 cm- 2 ) and (2) since the alkali layer has a small number density (character-

ized by the parameter K) and such a small absorption cross section, the product QK

is sufficiently small to drop the exponential time dependence term in equation (19).

Since the maximum electron density will occur when e = 0 (if reached),

dt19
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IOQ(nA - ne,max)] = ane,max (33)

so that if

X2QIO dk

W Q10 dX(34)
a

L4nA(Zq

ne,max(Z) = W 1+ W1 (35)

From equation (35) (under the same assumptions as eq. (33)) can also be found the
required alkali concentration for a given maximum electron density, that is,

2
nnA(Z) n2max(Z) + Wne,max(Z) (36)

nA Z) W (36)

The second equation describes the decline in the electron number density after the

Sun sets. The differential equation is

dne - -ane2  
(37)

dt(37)

the solution of which is

ne(Z,t) = ne(Z,t0) (38)
1 + ane(Z,t 0 )(t - t 0 )

or rewritten

ne(Z't0) 1
ne(Z,t) (9

a = (39)
ne(Z,t 0 )(t - t 0 )

Equations (36) and (39) are used later to narrow the range of acceptable coeffi-

cients. The final results to be presented, however, are based on the numerical solutions

of equation (32).
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RESULTS AND DISCUSSION

All the computer simulations were made for a latitude of 450 and a Sun declination

angle of 00 (corresponding to autumnal or vernal equinox). On the basis of published

data, the range of the absorption cross section was 10-22 to 10-18 cm 2 and the range

of the recombination coefficients was from 2 x 10-12 to 10-6 cm 3 -sec- 1 .

Tables I and II list the coefficients for each model and the electron densities for

each model at eight altitudes in the atmosphere. In table I there are two electron den-

sities listed for each model at each altitude. The upper entry is the expected peak equi-

librium electron density as obtained from the approximation equation (35). The lower

entry is the actual maximum electron density as computed from the time-dependent

equations. Again, in table II there are two electron densities listed for each model at

each altitude. In table II the upper number corresponds to the expected rhinimum elec-

tron density obtained by using equation (38), and the lower number is the minimum com-

puted electron density as computed from the time-dependent equations. Some general

observations can be made from these tables. These observations will be shown in fur-

ther detail in the figures. The first is that equation (35) gives a reasonable approxima-

tion for the peak value of the electron number density and, as is shown in equation (35),

the larger the value of W (W = a- 1  QI0 dX), the larger the peak electron number den-

sity. The second observation is that the smaller the value of ane, the less the night-

time decay of the electron density as was predicted by equation (38). Included with the

discussion of the models is their relative convergence rate. Each model started with

an initial electron density of zero electrons per cm 3 . The rate of convergence is a prob-

able indicator of the relative stability of the electron layer to atmospheric perturbations.

Figure 6 presents plots of the electron density for model 0. Model 0 has constants

of a = 2 X 10-12 cm 3 -sec - 1 , Q = 10 - 22 cm 2 , and K= 9.78 x 105 cm- 3 . In figure 6(a)

is plotted the variation of electron density with hour angle for eight altitudes in the

atmosphere. The hour angle is related to the time of day by equation (20). Examples

of local times are ¢ = -900 is approximately sunrise, ¢ = 0 is local noon, ¢ = 900

is approximately local sunset, and 0 = +1800 is midnight. Figure 6(b) is a plot of the

variation of electron density with altitude for the four times just illustrated. (Profiles

in-fig. 6(b) are coincident.) Model 0 has a large value of W and also has a large

peak electron density (2 x 104 cm- 3 ). This model has the smallest value of ane; thus,

the electron density exhibits an almost imperceptible nighttime decay. The lack of

decay is exhibited in figure 6(b), where the profiles for the four times of day all lie on

each other. Model 0 was converging so slowly that the computation was restarted by
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using electron densities slightly lower than the values obtained from equation (35). This

procedure, in effect, moves time forward in a large step and results in a convergence of

Ane/ne between morning terminators of about 10 - 4

Model 1 (a = 2 x 10 - 12 cm 3 -sec - 1 , Q= 10 - 1 8 cm 2 , and K= 9.78 x 105) results

are plotted in figure 7. The value of W for model 1 is very large and results in the

large electron density are shown in figure 7(a). Again, the value of ane is small and the

variation of electron density is very small; as a result, all four time curves apparently

coincide in figure 7(b). Model 1 converged in about a week of Martian time.

Model 2 (a = 10 - 6 cm3-sec- 1 , Q= 10-22 cm 2 , K= 9.78 x 105 cm - 3 ) shows a day-

night electron density variation of the type needed to explain the diurnal pressure vari-

ation. It shows a diurnal equilibrium, that is, the cycle repeats daily, but it does not

exhibit an equilibrium in the sense that the time derivative of the electron density equals

zero. This effect can be seen in figure 8(a) where there is a large discontinuity in

dne/dt at the terminators, no equilibrium concentration is reached, and yet diurnal

equilibrium is established. Model 2 has a small value of W; this condition is exhibited

by the extremely low electron densities achieved (on the order of one five-hundredths of

the electron densities of model 0, for example). The value of ane is in the midrange

of those investigated and results in the slow decay in the density distribution during the

night. This effect can be seen in figure 8(b) which is the first model to exhibit diurnal

variation of the electron profile. Model 2 was slow to converge and convergence was

difficult to determine because of the small numerical value of electron density.

Model 3 (a = 10-6 cm 3 -sec - 1 , Q= 10 - 18 cm 2 , K= 9.78 x 105 cm- 3 ) completes

the extremes of Q and a investigated and also exhibits the third type of diurnal vari-

ation encountered in the investigation. This diurnal variation is evident in figure 9(a).

There is a very sharp rise in electron density at sunrise (which is a result of the large

value of Q); an equilibrium of dne/dt = 0 is reached during the sunlight hours; and

then there is a very sharp decay in the electron density at night (which is a result of the

large value of ane). From figure 9(b), the profile plot for model 3, it can be seen that

for the midrange value of W, the peak electron density is not too large, but the large

diurnal variation in electron density, which is required to explain the pressure differ-

ences, is present. Model 3 reached equilibrium in about 6 days of Martian time.

To complete this preliminary analysis, the midrange values of Q= 10-22 cm 2

and a = 10 - 8 cm 3 -sec - 1 were investigated. Model 6 (a = 10 - 8 cm3-sec - 1 ,

Q = 10 - 22 cm 2 , K= 9.78 x 105 cm - 3 ) results are plotted in figure 10. The value of W

is small and, as a result, the electron number density is low, as can be seen in fig-

ure 10(a). The value ane was also small and implies slow decay; this effect is exhib-

ited in figure 10. Model 6 reached equilibrium after about 30 diurnal cycles.

22



The results of model 7 (a = 10-8 cm 3 -sec - , Q= 10 - 1 8 cm 2 , K= 9.78 x 105 cm 3 )

are plotted in figure 11. The recombination coefficient a is such that ane is large

and thus the distribution should exhibit a pronounced nighttime decay. This decay can

be seen in figure 11(a). The value of W for model 7 is also large and therefore the

peak electron number density is large. (See fig. 11(b).)

A MODEL CONSISTENT WITH OBSERVED

DIURNAL PRESSURE VARIATIONS

Examination of the foregoing results indicates that the sinusoidal diurnal variation

of the electron density which is observed in the Earth's ionosphere is not duplicated by

this low-lying electron layer on Mars. Thiseffect is predominately due to the product

of the absorption cross section and the source number density. When this product is small,

the exponential term in the electron production (eq. (35)), which accounts for the time varia-
tion, is very weak. Therefore, even for the long slant paths at the terminators, the ionizing

radiation on Mars has only been slightly attenuated. In fact, the production function, for the

low-lying electron, can be thought of almost as a light switch having two positions - on and

off.

The second result of this study came after the conclusion of all the actual time-

dependent calculations. The result was that equation (35), which neglected time depen-

dence, gave a good approximation to the peak electron number density (6 percent average

error). Thus, as more and better data about the Martian atmosphere become available,

equation (35) can be used to give a quick approximation as to the effect of the low-lying

electron layer on the atmospheric properties deduced by radio occultation and vice versa.

The third result was that the larger the value of ane, the faster the nighttime

decay of the electron density. This result would be expected from an examination of

equation (38). The general trend was that for values of ane < 10 - 6 sec- 1 , the distribu-

tion showed no diurnal variation; for values 1 0
- 4 sec - 1 > an e > 10-6 sec- 1 , the distri-

bution exhibited a sawtooth variation; and for ane > 10 - 4 sec - 1 , the distribution showed

a sharp rise and fall or a square wave.

Combining the results of the foregoing study with the measured pressure data

should allow the possible range of the various coefficients to be narrowed. From the

discussion of pressure data, it is clear that the peak electron density must be on the

order of 6 x 104 electrons per cm 3 and that this number must decrease at night to the

point of being undetectable. To determine the recombination coefficient the following

equation is used:
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ne(Z,t0) 1
ne(Z,t)

ne(Z,t 0)(t - t0 )

with ne (10.75 kin, sunset) 6 X 104 cm - 3 , (t - t0 (sunset)) = 2 hours, and
ne (10.75 km, t) z 6 x 103 cm- 3 , which is an electron density low enough to be

masked by an experiment error of 4 percent at the pressure levels in question.
For these values, the resulting recombination coefficient must be on the order of

2 X 10- 8 cm 3 -sec- 1; for ease of calculation, let a = 10-8 cm 3 -sec-1. Then,
to determine the required alkali source number density, equation (36) is rewrit-

ten with nA(Z) = K f(Z)

K n= max(Z) + W ne,max(Z)
W f(Z)

where f(Z) = exp -( + 6e-Z/6) and W = a- 1  Q10 dX. Therefore by assuming

Q = 10- 18 cm 2 , K is of the order of 2.92 X 106 cm- 3 , and means a peak density of

alkali atoms of 1.79 x 105 cm - 3 . Having a 0.2-micrometer particle sublimate one ten-

thousandths of its mass in alkali atoms would require a dust distribution of only 9 par-

ticles per cm 3 in order to produce the required alkaliatom density. One outcome of

this study, then, is that the coefficients of a = 10-8 cm 3 -sec- 1, Q = 10-18 cm 2 , and
K = 2.92 x 106 cm- 3 , which are within the range of laboratory measurements of the

processes involved, should produce an electron density model which will explain the

apparent diurnal pressure variation. These coefficients are used in model 8, and the
computed electron densities are plotted in figure 12. The effect of the larger cross
section can be seen in figure 12(a) as the extremely rapid rise in the electron density

immediately after sunrise. The electron density reaches an equilibrium of about 6 X 104

electrons per cm 3, as required, for the entire daylight period. The medium large prod-
uct of ane produces a rapid nighttime decay as is shown in figure 12. From fig-
ure 12(b) can be seen the electron density height profiles for four different times in the

Martian day. The morning profile has already nearly 90 percent of the equilibrium den-

sity shortly after sunrise. The noon and evening profiles coincide at the equilibrium
densities. Finally, the extremely rapid decay can be seen as the midnight profile has

fallen to 7 percent of the equilibrium density.

CONCLUSIONS

There are some general conclusions about the low-lying electron layer distribu-

tion that can be inferred from this study.

24



(1) Because the product of the absorption cross section and the number density of

the ionized constituent is small, the production term in the continuity equation has very

little time dependence during the day. Therefore, the sinusoidal time variation in elec-

tron density that is observed on Earth is not present in the low-altitude electron distri-

bution on Mars.

(2) The value of ane determines the shape of the curves of electron density as a

function of time; thus, for electron layers that are of possible importance in the expla-

nation of the radio occultation pressure discrepancies, the value of One (where a is

the recombination coefficient and ne is the electron density) must be at least equal to

or greater than about 1 0
- 4 sec- 1 .

(3) For om e > 10-4 sec-1, a good approximation to the peak electron density day-

time distribution is obtained.

From the preliminary Martian radio occultation data, it has been found that the

following values for the coefficients used in this study would adequately account for an

observed 1-mb difference between day and night surface pressures: a = 10-8 cm 3 -sec- 1 ,

Q = 10- 1 8 cm 2 , and K = 2.92 x 106 cm- 3 (Q is ionization absorption cross section and

K is an alkali scaling number). This value of the absorption coefficient is in the range

of that measured for the alkali metals. The value of the recombination coefficient

(= 10-8 cm 3 -sec - 1 ) implies that radiative recombination is not the dominant process for

the loss of electrons. The loss mechanism wherein the dust acts as a recombination site

is also not very probable since the dust density is numerically so small. Thus, the most

probable mechanism for the loss of electrons is CO 2 clustering to the alkali ion, which

has a very high rate coefficient.

A low-altitude residual dust layer in the Martian atmosphere has been observed

and measured and is theoretically required to explain temperature lapse rates; this

dust layer is composed of alkali and alkali compounds having low ionization potentials;

and the Martian atmosphere has low concentrations of O, 02, and 03 that allow solar

ultraviolet radiation to penetrate to the planet's surface. From a consideration of these

factors, it is concluded that there is a low-altitude electron layer. This study has

shown that it is well within the range of possible conditions in the atmosphere to obtain

peak electron densities on the order of 6 x 104 electrons/cm 3 , which would be required

to explain the observed diurnal pressure differences.

Several areas of research utilizing currently available data could be undertaken at

the present time. The first is a comprehensive reanalysis of present Martian atmos-

pheric pressure data to determine whether the effects of the low-altitude electron layer

are of sufficient magnitude to be able to define more closely the physical properties of

the layer. Secondly, studies can be initiated toward a simple analysis of meteoric abla-

tion. These studies would give an idea as to how closely an equilibrium distribution of
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ablated particles matches the required aerosol concentration layer. Differences between

the two, if any, would give a starting point as to the amount of aerosols that must be

lifted into the Martian atmosphere by meteorological phenomena.

It is proposed that an experiment be designed to search for and examine this low-

altitude electron layer. The discovery and understanding of such a layer would not only

be useful in the study of the Martian atmosphere but would also aid in the modeling of the

poorly understood Earth's alkali metal ion region and sporadic E layer, since the

Martian analysis would be much simpler (because of the much simpler Mars atmosphere).

For example, several models of the Earth' s alkali layer involve wind-induced V X B

shear layers of charged dust particles as a source of alkali atoms or involve wind-induced

V X B layers as a removal mechanism for the alkali ion (V is atmospheric wind velocity

and B is planetary magnetic field). Thus, on Mars where the magnetic field is less than

10- 3 times that of the Earth, the analysis of the effects of the lack of large magnitude

V X B forces in the alkali layer formation would have direct bearing on Earth models

requiring such forces.

Two experiments which could be utilized to detect the low-altitude electron layer

are a two-frequency radio occultation experiment or a twilight glow experiment. The

two-frequency radio occultation experiment (currently planned for the Viking orbiter)

will yield two values for the index of refraction of the Martian atmosphere because of

the different probing frequencies. The subtraction of the two indices of refraction and

the knowledge of the frequencies will yield a close approximation to the electron num-

ber density (since the index of refraction of most low-density neutral gases is not very

wavelength dependent). The twilight glow experiment would be to search for emission

lines in the atmospheric twilight. The identification of lines allows the delineation of

the alkali species and the intensity of the line can be related to the species number

density. Such an experiment could be implemented on an orbiting spacecraft and

could be combined with some similar type of emission experiment.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., August 1, 1974.
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APPENDIX

DERIVATION OF COMPOSITE INDEX OF

REFRACTION AND REFRACTIVITY

This appendix is a short derivation of the steps needed to determine equations (1)
and (3). To derive equation (1), it is assumed at first that in an electrically neutral,
nonconducting (no free electrons) atmosphere of dielectric constant en, one of Maxwell's

equations can be written as

aE (lVx H = En at (Al)

If now the electrically neutral medium contains free electrons (density ne) in

addition to the neutral part of the medium, then the conducting part of the medium can be

characterized by a conductivity a and Maxwell's equation is supplemented by Ohm's

law

J = rE = ne(e-)f (A2)

where V is the velocity of electron so that

-V X = e aE +y (A3)
at

or

V n = En + eE (A4)

If it is assumed that the right-hand side of equation (A4) can be expressed as some
composite dielectric coefficient times to reduce the equation to the simple form ofat
equation (Al), then

VxHE= ~ + .= -c y (A5)

To determine the conductivity, assume that there are negligible collisions so that the

equation of motion of an electron is

m d- e- (A6)

dt27
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APPENDIX - Continued

If

= E 0 e-iwt (A7)

then

= ie- (A8)
cm

From equation (A2)

aE = nee- = ine(e-)2 (A9)oem

so that

a = ine(e -) 2  (A10)
Wm

Substituting equation (A10) into equation (A5) yields

E + ine(e) 2  = c E (All)
En A- rn +  (All)

at Wm at

or

-iwOEn + ine(e-)2 -iWEc (A12)
om

or rearranged

ne(e-)2  ne~-
Ec En - n()w2m En- f2 (A13)

If the magnetic field is small so that the magnetic permeability of the medium is approx-

imately that of free space, then A = is the real index of refraction and

c 2= n2 _ ne(e-) 2  (A14)

(2T) 2E0mf

which is equation (1).
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APPENDIX - Concluded

To determine equation (3), define

X - ne(e-) 2  (A15)
(27r) 2E0 mf 2

then, equation (A14) becomes

Ac 2 = An2 - X (A16)

The index of refraction of just the electrons is

4e 2 = (1 + Ne x 10-6)2 = 1 - X (A17)

so that

1 + Ne x 10-6 -
= 1 -. 1 X (A18)

2

or

Ne x 10-6 = X (A19)

Substituting equation (A16) into equation (A19) yields

Ne x 10 - 6 ; ( 2 _ n2 ) = 1(gc - An) Ac + An) (A20)

Now

1c + /n ; 2 (A21)

and

p- 1 + Nx 10-6 (A22)

so that equation (A20) becomes

Ne x 10 - 6 2 (1+ Nc x 10-6 - 1 - Nn X 10-6)(2) (A23)

Ne = Nc - Nn (A24)

which is equation (3).
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TABLE I.- PREDICTED MAXIMUM ELECTRON DENSITIES (UPPER ENTRY) AND COMPUTED MAXIMUM

ELECTRON DENSITIES (LOWER ENTRY) FOR EIGHT ALTITUDES IN THE MODEL ATMOSPHERES

Model Q, cm2 a, cm3-sec-1 K, m-3 W, m-3 Values of ne, cm- 3 , for an altitude, kin, of -Model Q, cm 2 a, cm3 -sec- 1  K, cm- 3  W, cm- 3

0 5 10.75 15 20 30 40 50

0 E - 22 2E - 12 9.78E + 05 1.51E + 04 2126 15 491 23 502 20 719 14 427 4 804 1148 231

2013 14 043 20 770 18 479 13 085 4 540 1090 219

1 E - 18 2E - 12 1.51E + 08 2424 31 323 59 940 49 041 28 161 6 328 1235 234

2424 31 323 59 940 49 041 28 161 6 328 1235 234

2 E - 22 E - 06 3.03E - 02 8 30 42 38 29 13 6 2

6 29 41 37 27 12 4 1

3 E - 18 E - 06 3.03E + 02 718 2 933 4 113 3 706 2 773 1 241 478 155

718 2 932 4 113 3 706 2 773 1 241 478 155

6 E - 22 E - 08 3.03. 64 306 424 384 290 136 59 25

62 232 330 298 224 105 48 22

7 E - 18 E - 08 3.03E + 04 2256 19 184 30 087 26 274 17 758 5375 1188 232

2256 19 182 30 085 26 273 17 758 5 375 1188 232

8 E - 18 E - 08 2.92E + 04 3.03E + 04 6035 40 202 60 044 53 169 37 553 13 170 3323 685

6035 40 197 60 040 53 167 37 552 13 170 3323 685



TABLE II.- PREDICTED MINIMUM MORNING ELECTRON DENSITIES (UPPER ENTRY) AND COMPUTED

MINIMUM MORNING ELECTRON DENSITIES (LOWER ENTRY) FOR EIGHT ALTITUDES

IN THE MODEL ATMOSPHERES

Values of ne, cm- 3 , for an altitude, kin, of -
Model Q, cm 2 a, cm 3 -sec- 1  K, cm- 3  ane, sec- 1

0 5 10.75 15 20 30 40 50

0 E - 22 2E - 12 9.78E + 05 4.7E - 08 2125 15 470 23 454 20 684 14 410 4802 1148 231

2013 14 027 20 735 18 451 13 071 4539 1090 219

1 E - 18 2E - 12 1.2E - 07 2424 31 241 59 646 48 846 28 097 6325 1234 233

2423 31 241 59 646 48 847 28 097 6324 1235 234

2 E - 22 E - 06 4.2E - 05 6 17 15 15 13 9 4 1

5 13 15 14 13 8 4 1

3 E - 18 E - 06 4.1E - 03 22 24 24 24 24 25 24 22

21 23 24 24 24 25 24 22

6 E - 22 E - 08 4.2E - 06 81 27 361 331 260 130 58 24

60 21 291 266 206 131 47 22

7 E - 18 E - 08 3.0E - 04 1128 2 111 2 248 2 253 2 192 1735 817 213

1128 2 111 2 248 2 229 2 192 1736 817 214

8 E- 18 E -08 2.92E + 06 6.0E -04 1642 2240 2335 2355 2344 2145 1464 545

1642 2 239 2 335 2 355 2 344 2145 1464 545
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Figure 7.- Calculated electron densities for model 1.
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